

Suivi des stocks de palourdes sur les gisements classés de Bourgeois et d'Ade Manson

Année 2020

Cédric HENNACHE CREAA – Juin 2020

Table des matières

1-	C	onte	rte	4
2-	N	létho	dologie	4
	2.1	Cl	noix des sites	4
	2.2	St	ratégie d'échantillonnage	6
	2.3	Éd	chantillonnage	7
	2.4	M	éthode de prélèvement	9
	2.	4.1	À la benne	9
	2.	4.2	À pied	9
	2.5	Tı	aitement des échantillons	10
	2.6	A	nalyses des données	10
	2.	6.1	Relation taille-poids	10
	2.	6.2	Effectifs et biomasses	11
	2.	6.3	Densités	11
	2.	6.4	Histogrammes de fréquence de taille	11
3-	R	ésult	ats	12
	3.1	R	elation taille / poids	12
	3.2	Α	oondances et biomasses	12
	3.3	D	ensités de palourdes	14
	3.4	St	ructure en taille	17
	3.5	Fr	action exploitable du stock	18
	3.6	E۱	volution du gisement d'Ade Manson depuis 2014	18
	3.	6.1	Effectif et abondance	18
	3.	6.2	Structure en taille	20
	3.7	C	omparaison du gisement de Bourgeois depuis 2015	20
	3.	7.1	Effectif et abondance	20
	3.	7.2	Structure en taille	22
4-	D	iscus	sion	23
	4.1	A	de Manson	23
	4.2	В	ourgeois	23
5-	C	onclu	sion	24
Re	emer	ciem	ents	25

Liste des figures

Figure 1 : Gisements classés pour la pêche à pied professionnelle de la palourde en Charente-Mariti	
Figure 2 : Strates et stations de prélèvements sur Ade Manson (A) et Bourgeois (B)	
Figure 3 : Différentes étapes du prélèvement	
Figure 4 : Cadrat et tamis utilisés pour les prélèvements à pied	
Figure 5 : Analyse des palourdes en laboratoire	
Figure 6 : Relation taille-poids des palourdes échantillonnées à Ade Manson et à Bourgeois	
Figure 7 : Abondance en millions d'individus par strate et par gisement	
Figure 8 : Biomasse en tonnes par strate et par gisement	
Figure 9 : Densités de palourdes par strate et par gisement en nombre d'individus par m²	
Figure 10 : Densités de palourdes par strate et par gisement en gramme par m²	
Figure 11 : Densités de palourdes commerciales et non commerciales en nombre par m² sur le gisements suivis en 2020 par le PNM	
Figure 12 : Histogramme de la structure en taille des palourdes prélevées lors de la campagne 2020 les 2 gisements	
Figure 13 : Evolution des densités sur le gisement d'Ade Manson	19
Figure 14 : Evolution de la structure en taille de la population de palourdes d'Ade Manson depuis 20	
Figure 15 : Comparaison des biomasses et des effectifs sur le gisement de Bourgeois en 2015, 2018	3 et
Figure 16 : Structure en taille de la population de palourdes de Bourgeois depuis 2015	22
Liste des tableaux	
Tableau 1 : Récapitulatif des sites suivis par année et par maître d'ouvrage	6
Tableau 2 : Effort d'échantillonnage par gisement	7
Tableau 3 : Fraction exploitable du stock de palourdes par gisement	18
Tableau 4 : Résultats obtenus à Bellevue depuis 2014	19
Tableau 5 : Résultats obtenus à Bourgeois depuis 2015	21
Liste des annexes	
Annexe 1 : Tableau des résultats bruts obtenus sur la zone classée « pêche à pied » d'Ade Manson	26
Annexe 2: Tableau des résultats bruts obtenus sur la zone classée « pêche à pied » de Bourgeois	
Annexe 3 : Tableaux récapitulatifs des principaux résultats depuis 2014 sur les différents giseme suivis	nts

1- Contexte

Afin de s'assurer une gestion durable des ressources exploitées, les pêcheurs professionnels, via leur structure interprofessionnelle ; le Comité Départemental des Pêches Maritimes et des Élevages Marins de Charente Maritime, réalisent le suivi de certains stocks d'espèces exploitées et gérées localement. Depuis les années 2000, ce suivi concerne les pectinidés : Coquilles Saint-Jacques et pétoncles. À partir de 2014, ces suivis se sont étendus aux stocks de palourdes des gisements bénéficiant d'un classement sanitaire pour l'exploitation des bivalves fouisseurs dans le cadre d'une activité de pêche à pied professionnelle.

Le Comité Départemental des Pêches a sollicité le CREAA (Centre Régional d'Expérimentation et d'Application Aquacole) pour réaliser ces suivis. Ce dernier a reçu un soutien méthodologique sur les stratégies d'échantillonnage, par le laboratoire LIENSs (Littoral Environnement et Sociétés) de l'Université de La Rochelle pour mener à bien ces évaluations.

Chaque année, 2 gisements de palourdes sélectionnés par les professionnels, sur les 7 disponibles à l'exploitation, sont suivis par les équipes du CREAA en collaboration avec du personnel du CDPMEM 17. Le gisement du Fier d'Ars est également suivi suivant le même protocole par la CdC de l'Ile de Ré et le CREAA. Afin d'avoir une vision d'ensemble des stocks de palourdes sur son territoire, le Parc Naturel Marin de l'Estuaire de la Gironde et de la Mer des Pertuis a souhaité compléter les suivis existants en échantillonnant les 2 principaux gisements sur les 4 gisements restant. Il a pour cela sollicité l'appui technique du CREAA.

L'étude de l'abondance du stock est effectuée sur les deux espèces de palourdes *Ruditapes philippinarum* (palourde japonaise) et *Ruditapes decussatus* (palourde européenne). Les témoignages de professionnels et les constatations sur le terrain montrent que les populations de palourdes sur les sites exploités des estrans du bassin de Marennes-Oléron et de Bonne Anse sont composées presque uniquement de palourdes japonaises, bien qu'il existe 6 espèces de palourdes dans les pertuis Charentais¹. D'après Bordeyne² en 2009, les palourdes japonaises représentaient 99,5 % du stock de palourdes de Bellevue. Compte tenu de la très faible proportion de palourde européenne rencontrée, la distinction avec la palourde japonaise n'est pas faite lors de ces suivis.

2- Méthodologie

2.1 Choix des sites

7 zones classées peuvent être exploitées par les pêcheurs à pied professionnels (Figure 1):

Bellevue d'avril à juin

¹ De Montaudouin X., Sauriau P.-G. (2000). Contribution to a synopsis of marine species richness in the Pertuis Charentais Sea with new insights in soft-bottom macrofauna of the Marennes-Oléron Bay. *Cahiers de Biologie Marine*, 41(2), 181-222

² Bordeyne F. (2009). Estimation des stocks de palourdes sur les côtes oléronaises du bassin de Marennes-Oléron – 06/2009. La Tremblade, IFREMER, IUT de Caen Département Génie Biologique. 63 p.

- Bonne Anse de juillet à mars
- Bourgeois-Barat toute l'année
- Ade Manson toute l'année
- Fier d'Ars toute l'année
- Fouras toute l'année
- Ronce-Perquis toute l'année

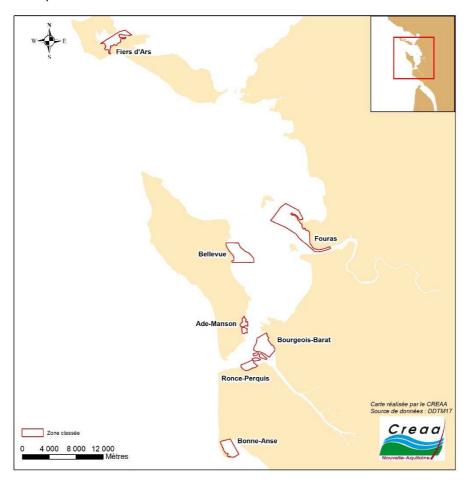


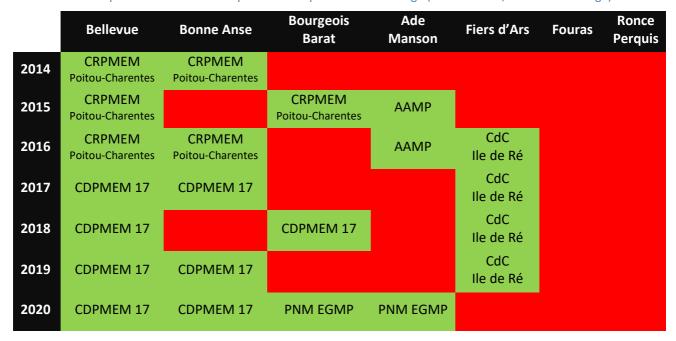
Figure 1 : Gisements classés pour la pêche à pied professionnelle de la palourde en Charente-Maritime

Pour des raisons de moyens humains et financiers, tous les sites ne sont pas évalués chaque année par les professionnels.

Situé dans la Réserve Nationale Naturel de Moëze-Oléron, le site de Bellevue est évalué annuellement depuis 2014. Deux autres sites sont suivis alternativement à la demande des professionnels ; Bonne-Anse et Bourgeois-Barat. Ce dernier suivi se fait exclusivement sur le secteur de Bourgeois, Barat n'étant que peu exploité par les professionnels.

Depuis 2016, le site du Fiers d'Ars est suivi chaque année par le CdC de l'Ile de Ré et le CREAA.

La population de palourdes du site d'Ade-Manson a été estimée par l'Agence des Aires Marines protégées dans le cadre du programme LIFE + pêche à pied de loisir en 2015 et en 2016.


En 2020, les sites de **Bellevue** et de **Bonne Anse** ont été évalués au mois de mars à la demande des professionnels. En raison de la crise sanitaire du COVID 19, le site du **Fiers d'Ars** n'a pas été suivi cette année.

Les site classés de **Ronce-Perquis** et **Fouras**, peu exploités par la profession, ne sont pas évalués pour le moment.

En 2020, Le PNM complète ces suivis avec l'évaluation des sites de **Bourgeois** et d'**Ade-Manson**. La volonté du Parc étant également d'évaluer l'impact de la pêche de loisir sur les gisements de palourdes, le périmètre de la zone d'échantillonnage est élargi par rapport au périmètre de la zone classée. Sur Ade Manson dans un premier temps, puis sur Bourgeois dans les années à venir.

Le Tableau 1 récapitule l'ensemble des suivis effectués depuis 2014

Tableau 1 : Récapitulatif des sites suivis par année et par maître d'ouvrage (suivis en vert, non suivi en rouge)

2.2 Stratégie d'échantillonnage

Plusieurs stratégies d'échantillonnage peuvent être élaborées dans le domaine de l'écologie halieutique³. Celle mise en place dans cette évaluation est l'échantillonnage aléatoire simple et/ou l'échantillonnage aléatoire stratifié. L'échantillonnage est réalisé sur une zone réduite au sein de la zone classée, qui exclut les secteurs de parcs ostréicoles et ceux trop haut sur l'estran.

Cet échantillonnage est simple sur le site de Bourgeois qui comprend une strate unique composée d'un seul type de sédiment vaseux.

Il est aléatoire stratifié sur le site d'Ade-Manson. 3 strates sont définies car les usages y sont différents

- Ade, au nord, difficile d'accès et fréquentée en majorité par les professionnels,
- Manson, au sud, davantage fréquentée par les pêcheurs de loisir,
- Les coursières peu fréquentées par les pêcheurs

Les différentes strates sont représentées sur les cartes de la Figure 2.

³ Frontier S. 1984. (ed.) Stratégie d'échantillonnage en écologie. Masson. Paris

2.3 Échantillonnage

Les effectifs des échantillons pour chaque secteur et chacune des strates ont été déterminés de manière à trouver le compromis entre le temps disponible pour réaliser cet échantillonnage et le nombre d'échantillons suffisants pour avoir une précision satisfaisante dans l'évaluation du stock de palourdes des différentes zones classées. Le nombre de stations défini dans ces suivis est supérieur aux dix points par km² permettant d'obtenir une précision acceptable selon Caill-Milly et al. (2003)⁴, Une fois leur nombre identifié sur chaque strate, les stations d'échantillonnage ont été placées aléatoirement avec une distance minimale entre chaque station (Figure 2).

Sur chaque station, trois réplicats sont prélevés afin de prendre en compte l'hétérogénéité locale de la population de palourdes. Leurs résultats sont ensuite agglomérés. Le Tableau 2 présente l'effort d'échantillonnage par gisement.

Tableau 2 : Effort d'échantillonnage par gisement

Gisement classée	Strate	Surface (ha)	Nombre de stations
	Ade	92,2	26
Ade-Manson	Manson	63	19
	Coursières	5,3	10
Bourgeois	Vase	316,2	36

⁴ Caill-Milly N., De Casamajor M. N., Lissardy M., Sanchez F. & Morandeau G., 2003. Campagne d'evaluation du stock de palourdes du bassin d'Arcachon – Campagne 2003. Rapport Ifremer, 64p.

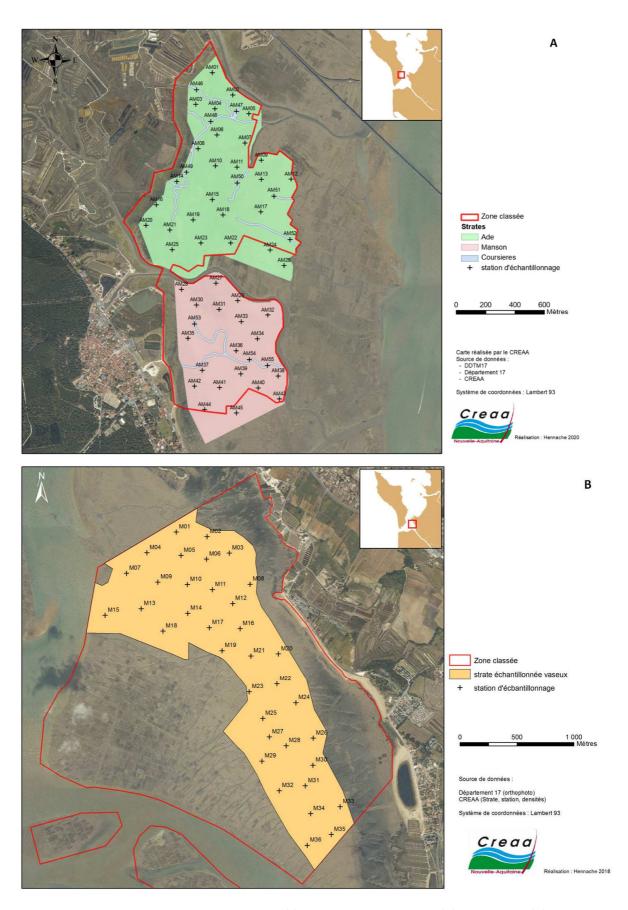
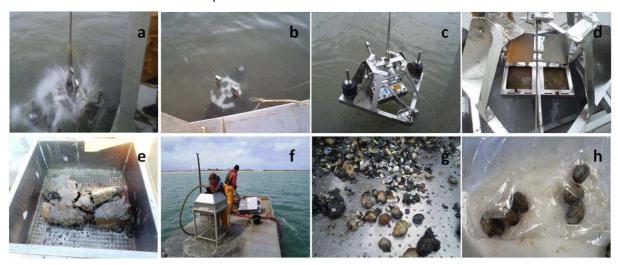



Figure 2 : Strates et stations de prélèvements sur Ade Manson (A) et Bourgeois (B)

2.4 Méthode de prélèvement

2.4.1 À la benne

La majorité des stations a été prélevée à l'aide d'une benne Day-Grab (benne Smith-McIntyre modifiée) depuis le pont du chaland ostréicole du CREAA, le « Terdoux » immatriculé MN 787 591. Le positionnement sur chaque station s'est fait à l'aide d'un GPS et du logiciel *Maxsea*. Arrivé sur la station de prélèvement, le navire est immobilisé à l'aide de deux pics en aluminium placés dans des portespics. Si la hauteur d'eau est trop importante, une ancre est utilisée en remplacement. Le bateau dispose d'un mât de charge permettant de manipuler la benne qui s'enfonce dans le sédiment sous son propre poids. La benne est ensuite remontée à bord grâce à un câble, la tension sur le câble entraine la fermeture du godet qui emprisonne le prélèvement. Les 15 premiers centimètres de sédiment sur une surface de 0,1 m² vont alors être piégés dans le godet. La benne est ensuite remontée à bord puis vidée dans un bac de criée sans trou. Le sédiment est transféré sur une table de tri de mailles rondes 5 mm. Le sédiment est lavé à l'eau de mer. Les palourdes présentes dans l'échantillon sont conservées dans un sac fermé portant l'identifiant de la station échantillonnée. La Figure 3 cidessous illustre ces différentes étapes.

Figure 3: Différentes étapes du prélèvement : Benne jetée par-dessus bord (a) puis enfoncée dans le sédiment (b). Relève de la benne (c). Sédiment collecté (d), disposé sur la table de tri (e) et rincé à l'eau de mer (f). Palourdes présentes dans l'échantillon (g) puis conservées pour analyse (h).

Les campagnes en bateau se sont déroulées le 27 mai sur Bourgeois, et le 28 et 29 mai sur Ade Manson.

2.4.2 À pied

L'échantillonnage dans les coursière d'Ade-Manson est réalisé à pied, à marée basse, afin de s'assurer que les prélèvements sont bien effectués dans les coursières, souvent étroites. L'hydrodynamisme élevé sur le secteur peut parfois modifier de quelques mètres la configuration et la position des coursières sur l'estran.

Les prélèvements sont effectués à l'aide d'une pelle et d'un « cadrat » d'une surface de 0,1 m² (similaire à celle de la benne utilisée en bateau), sur une profondeur de 15 cm environ, équivalent à un godet de benne. Le sédiment est ensuite tamisé dans un tamis de maille 5 mm (Figure 4). Trois prélèvements sont effectués sur chaque station. Toutes les palourdes trouvées sont conservées dans un sac portant le numéro d'identification du prélèvement effectué.

Figure 4 : Cadrat et tamis utilisés pour les prélèvements à pied

L'échantillonnage à pied s'est déroulé les 3 et 4 juin.

2.5 Traitement des échantillons

La biométrie des palourdes est réalisée le jour même, après le prélèvement. Après avoir été égouttées, elles sont mesurées à l'aide d'un pied à coulisse digital, au centième de mm près, dans l'axe de la plus grande longueur. La masse de chaque palourde est ensuite pesée à l'aide d'une balance au dixième de gramme (Figure 5). Les données biométriques sont entrées au fur et à mesure dans un fichier *Excel*. Les palourdes échantillonnées sont dans la mesure du possible ressemées en mer ou à défaut dans les claires du CREAA.

Figure 5 : Analyse des palourdes en laboratoire. Égouttage (a), taille (b) et poids (c)

2.6 Analyses des données

2.6.1 Relation taille-poids

Les données biométriques permettent l'obtention d'une relation taille / poids des palourdes prélevées à Ade Manson et à Bourgeois. Cette relation est une courbe de type exponentiel $P = aL^b$ où P est la biomasse (en g) et L la longueur (en mm), a et b sont les coefficients de la relation taille/poids. Une relation est réalisée sur chacun des gisements afin de déterminer si le remplissage de la coquille par les chairs est différent selon le gisement.

2.6.2 Effectifs et biomasses

L'effectif des palourdes observées sur chaque station permet de définir les effectifs au sein de chaque strate (Equation 1). Les données de masse individuelle des palourdes permettent de calculer les biomasses totales (Equation 2). L'effectif commercial est ensuite calculé grâce au nombre d'individus prélevés de plus de 35 mm. La biomasse commerciale est calculée grâce aux masses individuelles de palourdes de plus de 35 mm.

Equation 1:

Abondance par strate = Abondance moyenne de la strate $x \left(\frac{Surface de la strate}{Surface échantillonnée} \right)$

Equation 2:

Biomasse par strate = Biomasse moyenne de la strate $x \left(\frac{Surface de la strate}{Surface échantillonnée} \right)$

2.6.3 Densités

Les densités commerciales et non commerciales sont calculées à partir des effectifs et des biomasses obtenus auparavant (Equation 3 et 4).

Equation 3:

$$Densit\'e (ind. m^2) = \frac{Abondance \ de \ la \ strate}{Surface \ de \ la \ strate}$$

Equation 4:

$$Densit\'e(g.m^2) = \frac{Biomasse\ de\ la\ strate}{Surface\ de\ la\ strate}$$

Les variances des formules précédentes, qui permettent de calculer les intervalles de confiances à 95 %, sont calculées avec la formule de Satterthwaite (Cochran, 1977, p.96)⁵

2.6.4 Histogrammes de fréquence de taille

Des histogrammes de fréquence de taille sont réalisés au sein des différentes strates. La classe de taille utilisée pour cette analyse est de 1 mm. Ces histogrammes permettent d'observer la structure en taille des populations de palourdes de chaque site échantillonné et de comparer leur évolution au fil des années.

⁵ Cochran, W.G., 1977. Sampling techniques. New York, John Wileys & Sons: 428 p

3- Résultats

3.1 Relation taille / poids

La Figure 6 met en évidence la clé taille / poids sur chacun des 2 gisements suivis.

La relation est de type puissance, les équations s'écrivent de la façon suivante.

Ade Manson : P = 1,3510.10⁻⁴ x L^{3,2059}

• Bourgeois : P = 0,9634.10⁻⁴ x L^{3,2840}

Où P représente la masse individuelle (en g) et L la longueur de la coquille (en mm).

On constate que les 2 courbes sont proches l'une de l'autre du fait de la variabilité naturelle des masses pour une taille fixée.

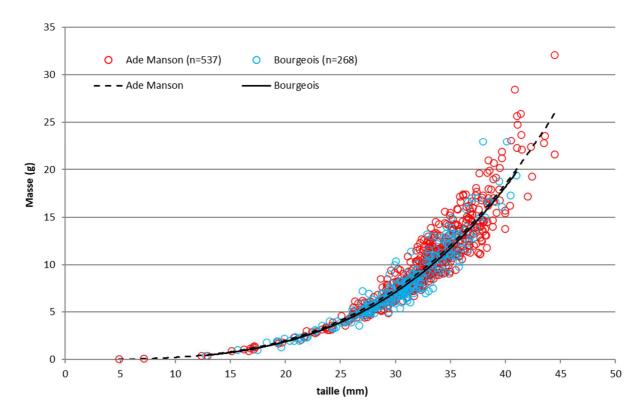
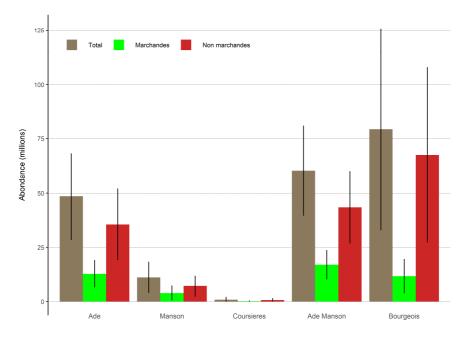
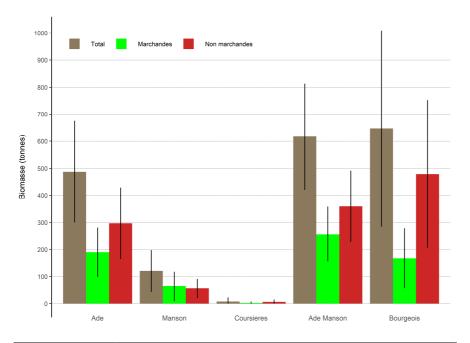



Figure 6 : Relation taille-poids des palourdes échantillonnées à Ade Manson et à Bourgeois

3.2 Abondances et biomasses

La répartition de l'abondance et des biomasses au sein de chaque strate est présentée dans les Figures 7 et 8. Les barres d'erreur ou les mentions (±) sur les estimations représentent l'intervalle de confiance à 95%, indiquant que le chiffre moyen a 95% de chance d'être situé dans l'intervalle de la moyenne plus ou moins l'intervalle.

Dans les figures suivantes, Ade-Manson correspond à l'addition des 3 strates de ce gisement (Ade, Manson et Coursières), également représentées.



Abondance (millions)		Ade	Manson	Coursières	Ade Manson	Bourgeois
-	moyenne	48	11	1	60	79
Total	IC (95%)	20	7	1	21	46
Marchandes	moyenne	13	4	0	17	12
Marchandes	IC (95%)	6	3	0	7	8
Non Marchandes	moyenne	36	7	1	43	68
Non Marchandes	IC (95%)	17	5	1	17	40

Figure 7: Abondance en millions d'individus par strate et par gisement

La population totale à Ade Manson est estimée à 60 (\pm 21) millions d'individus, ce qui représente une biomasse de 617 (\pm 197) tonnes. La population commerciale est estimée à 17 (\pm 7) millions d'individus, soit une biomasse de 257 (\pm 102) tonnes.

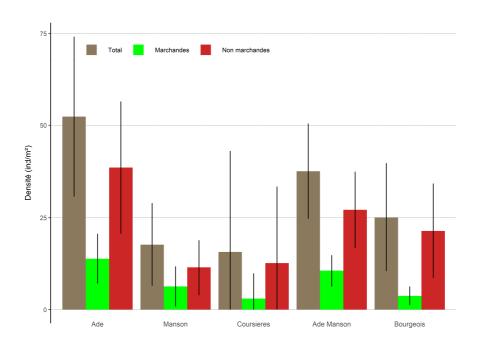
À Bourgeois, la population totale est estimée à 79 (\pm 46) millions d'individus ce qui représente une biomasse de 647 (\pm 362) tonnes. La population commerciale est estimée à 12 (\pm 8) millions d'individus pour une biomasse totale estimée à 168 (\pm 111) tonnes.

Biomasse (tonnes)		Ade	Manson	Coursières	Ade Manson	Bourgeois
Total	moyenne	487	121	9	617	647
Total	IC (95%)	188	77	15	197	362
	moyenne	190	64	2	257	168
Marchandes	IC (95%)	91	53	5	102	111
Non Mondon de	moyenne	297	56	6	360	479
Non Marchandes	IC (95%)	131	35	10	132	273

Figure 8 : Biomasse en tonnes par strate et par gisement

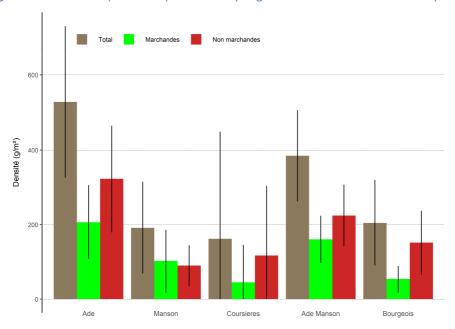
3.3 Densités de palourdes

Les densités en nombre d'individus par m² et en gramme par m² sont représentées dans les Figures 9 et 10. Les barres d'erreur représentent l'intervalle de confiance à 95 %.


Ade Manson

Sur l'ensemble du gisement, la densité moyenne est de 38 (± 13) ind/m², pour un poids moyen de 384 (± 122) g/m².

Bourgeois


Ce gisement affiche une densité moyenne de 25 (±15) ind/m², pour un poids moyen de 205 (±115) g/m².

La Figure 11 permet de visualiser les proportions de palourdes commerciales et non commerciales sur chaque station échantillonnée. La taille des diagrammes est proportionnelle à la densité de palourdes observée sur chaque station (en nombre / m²).

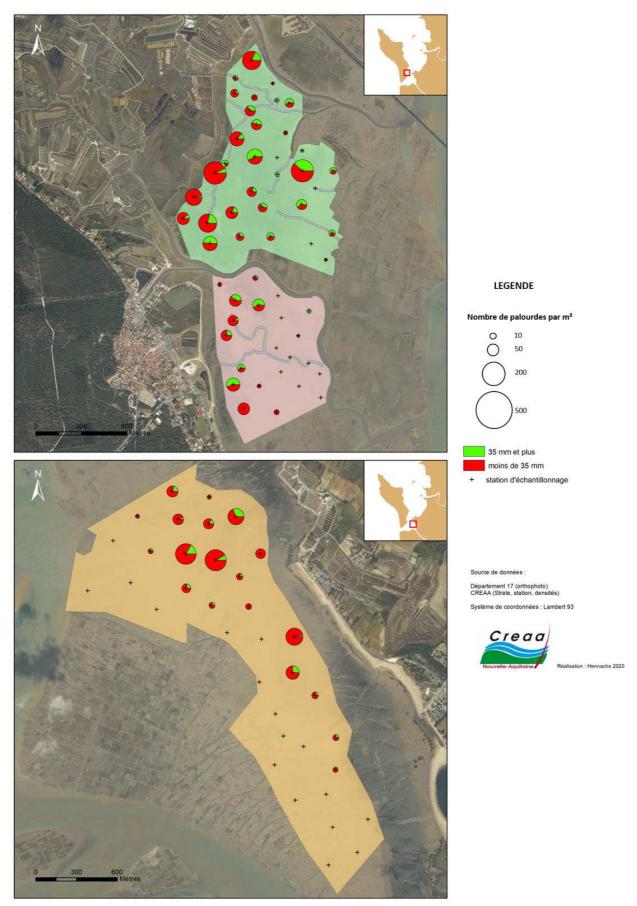
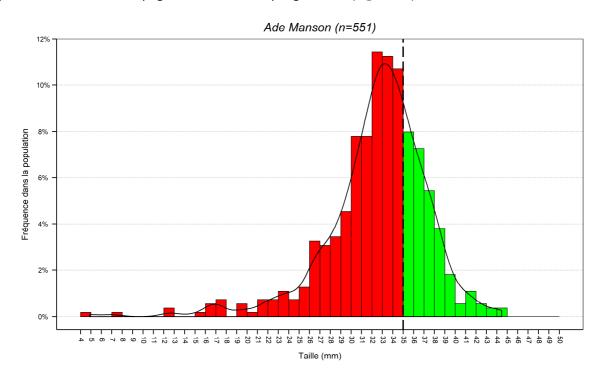

Densité (ind/m²)		Ade	Manson	Coursières	Ade Manson	Bourgeois
-	moyenne	52	18	16	38	25
Total	IC (95%)	22	11	27	13	15
N do wala a wala a	moyenne	14	6	3	11	4
Marchandes	IC (95%)	7	5	7	4	2
Non Marchandes	moyenne	39	11	13	27	21
ivon iviarchandes	IC (95%)	18	8	21	10	13

Figure 9 : Densités de palourdes par strate et par gisement en nombre d'individus par m²

Densité (g/m²)		Ade	Manson	Coursières	Ade Manson	Bourgeois
-	moyenne	528	192	162	384	205
Total	IC (95%)	203	123	286	122	115
Marchandes	moyenne	206	102	45	160	53
Marchandes	IC (95%)	99	84	101	63	35
Non Marchandes	moyenne	322	90	117	224	152
ivon iviarchandes	IC (95%)	142	55	187	82	86


Figure 10 : Densités de palourdes par strate et par gisement en gramme par m²

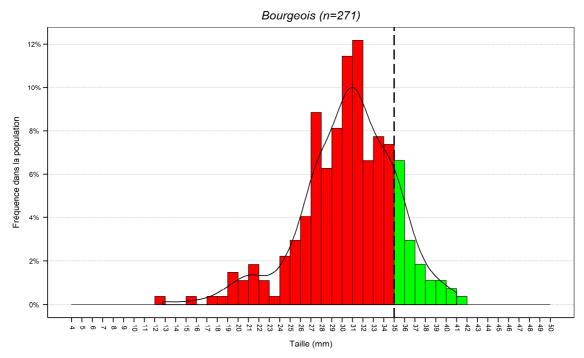


Figure 11 : Densités de palourdes commerciales et non commerciales en nombre par m² sur les 2 gisements suivis en 2020 par le PNM (Ade Manson en haut et Bourgeois en bas)

3.4 Structure en taille

Les histogrammes de fréquence de taille sont établis à l'aide des mesures de taille des palourdes prélevées lors de la campagne au sein de chaque gisement (Figure 12).

Figure 12 : Histogramme de la structure en taille des palourdes prélevées lors de la campagne 2020 sur les 2 gisements (en vert : les palourdes commerciales)

Ade Manson

Les palourdes échantillonnées mesurent entre 4,9 mm et 44,5 mm. La taille moyenne est de 32,5 mm. La classe de taille la plus représentée est celle des palourdes comprises entre 32 et 33 mm. Sur cet échantillonnage, la part des palourdes de plus de 35 mm représente 29,2 % du total.

On constate que les palourdes comprises entre 32 mm et 35 mm représentent 33,4 % de la population échantillonnée. Les palourdes nées l'année précédente (taille inférieure à 20 mm) représentent 2,7 % de l'ensemble des palourdes échantillonnées.

Bourgeois

Les palourdes mesurent entre 12,8 mm et 41 mm. La taille moyenne est de 30,5 mm. Le mode dominant correspond à la classe de taille comprise entre 31 et 32 mm. Les palourdes de taille commerciale représentent 14,8 % de la population échantillonnée.

Sur l'échantillonnage réalisé, ce gisement comporte 3 % de palourdes de moins de 20 mm, nées l'année précédente.

3.5 Fraction exploitable du stock

La fraction exploitable est la proportion d'individus de plus de 35 mm (taille minimale légale de capture), sur la population totale estimée, exprimée en abondance ou en biomasse. Le Tableau 3 présente la part de la fraction exploitable sur les 2 gisements.

Fraction exploitable (% effectif) (% biomasse)

ADE MANSON 28 41,7

BOURGEOIS 14,8 25,9

Tableau 3: Fraction exploitable du stock de palourdes par gisement

En 2020, la proportion estimée de palourdes de plus de 35 mm sur l'ensemble de la population est plus importante sur le gisement d'Ade Manson que celui de Bourgeois.

Les données brutes de la campagne 2020, ainsi qu'un tableau récapitulatif des principaux résultats des campagnes précédentes sur l'ensemble des gisements sont fournis en annexes.

3.6 Evolution du gisement d'Ade Manson depuis 2014

3.6.1 Effectif et abondance

Le Tableau 4 présente les résultats du suivi de la population de palourdes exprimés en densité sur le gisement d'Ade Manson en 2014, 2015 et 2020. La biomasse totale et l'effectif ne sont pas comparables entre 2015/2016 et 2020. La surface totale du site ainsi que les stations échantillonnées ayant été ajustées entre ces 3 années.

La Figure 13 permet de visualiser l'évolution de ces densités.

On remarque une certaine stabilité du stock de palourdes d'Ade Manson entre ces 3 années. L'année 2016 est en deçà des 2 autres, cette différence avec les autres années n'est toutefois pas significative compte tenu des intervalles de confiance qui se chevauchent.

Tableau 4 : Résultats obtenus à Bellevue depuis 2014

	2015	ADE MANSON	N 2020
Densité tot. (ind./m²)	43 ± 15	33 ± 11	38 ± 13
Densité com. (ind./m²)	15 ± 5	9 ± 4	11 ± 4
Densité non com. (ind./m²)	28 ± 10	24 ± 8	27 ± 10
Densité tot. (g/m²)	480 ± 169	279 ± 96	384 ± 122
Densité com. (g/m²)	247 ± 93	135 ± 62	160 ± 63
Densité non com. (g/m²)	232 ± 89	144 ± 48	224 ± 82
Fraction exploitable (% de l'effectif)	35,4	28,1	28,0
Fraction exploitable (% de la biomasse)	51,6	48,3	41,7

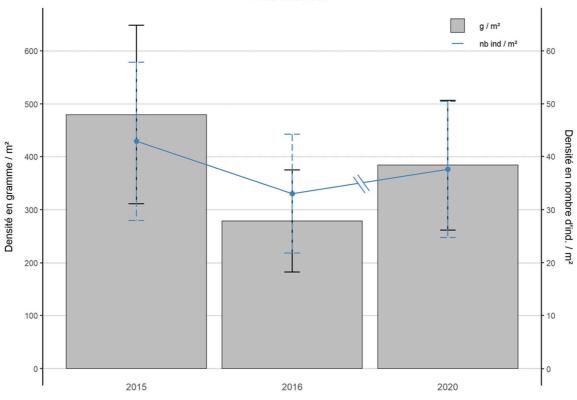


Figure 13 : Evolution des densités sur le gisement d'Ade Manson

3.6.2 Structure en taille

L'histogramme de la Figure 14 montre l'évolution de la structure en taille de la population de palourdes du gisement d'Ade Manson sur les 3 années suivies.

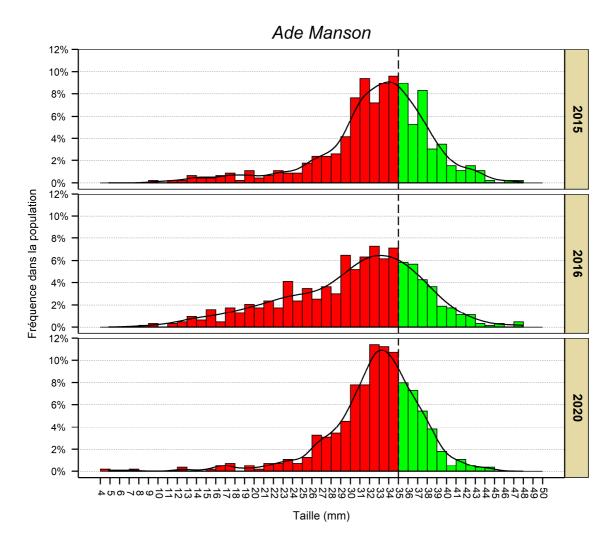


Figure 14: Evolution de la structure en taille de la population de palourdes d'Ade Manson depuis 2015

La proportion de petites palourdes de moins de 20 mm observée lors de l'échantillonnage de 2020 (2,7 %), est la plus faible observée durant ces 3 années.

La proportion de palourdes commerciales (29,2 %) est proche de celle observée en 2015 (35 %) et 2016 (26,5%).

3.7 Comparaison du gisement de Bourgeois depuis 2015

3.7.1 Effectif et abondance

3 suivis ont été réalisés sur Bonne Anse entre 2014 et 2020 durant les années 2015, 2018 et 2020.

Le Tableau 5 présente les résultats obtenus sur ce gisement.

Bien que le résultat ne soit pas significatif en raison des intervalles de confiance qui se chevauchent, l'effectif de la population de palourdes de Bourgeois et sa biomasse semblent croître à nouveau après une baisse observée en 2018 (Figure 15).

Tableau 5 : Résultats obtenus à Bourgeois depuis 2015

		BOURGEOIS	
	2015	2018	2020
Abondance tot. (millions d'ind.)	60 ± 30	33 ± 19	79 ± 46
Abondance com. (millions d'ind.)	26 ± 15	8 ± 5	12 ± 8
Abondance non com. (millions d'ind.)	34 ± 18	25 ± 17	68 ± 40
Biomasse tot. (tonnes)	667 ± 338	267 ± 145	647 ± 362
Biomasse com. (tonnes)	368 ± 215	118 ± 78	168 ± 111
Biomasse non com. (tonnes)	299 ± 160	149 ± 95	479 ± 273
Densité tot. (ind./m²)	19 ± 9	10 ± 6	25 ± 15
Densité com. (ind./m²)	8 ± 5	2 ± 2	4 ± 2
Densité non com. (ind./m²)	11 ± 6	8 ± 5	21 ± 13
Densité tot. (g/m²)	211 ± 107	85 ± 46	205 ± 115
Densité com. (g/m²)	116 ± 68	37 ± 25	53 ± 35
Densité non com. (g/m²)	95 ± 50	47 ± 30	152 ± 86
Fraction exploitable (% de l'effectif)	43,1	23,0	14,8
Fraction exploitable (% de la biomasse)	55,2	44,2	25,9

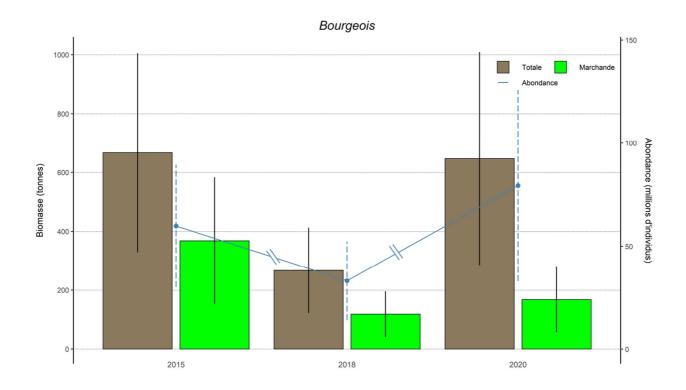


Figure 15 : Comparaison des biomasses et des effectifs sur le gisement de Bourgeois en 2015, 2018 et 2020

3.7.2 Structure en taille

L'histogramme de la Figure 16 montre la structure en taille de la population de palourdes du gisement de Bourgeois lors des 3 années suivies. Faute d'un effectif suffisant l'histogramme de l'année 2018 présente une courbe très irrégulière.

La proportion de palourdes commerciales dans l'effectif total diminue chaque année. De 43 % en 2015, elle passe à 23 % en 2018, puis 15,8 % en 2020.

Concernant les palourdes de l'année précédente (inférieure à 20 mm), on constate que c'est durant l'année 2018 que la proportion observée est la plus importante (8,9 %). Elle est faible en 2015 (1,5%) et 2020 (3%).

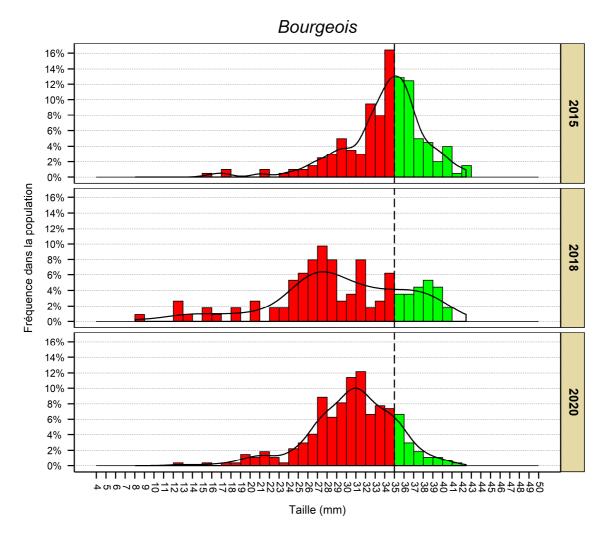


Figure 16: Structure en taille de la population de palourdes de Bourgeois depuis 2015

4- Discussion

4.1 Ade Manson

Fin mai 2020, le nombre de palourdes sur ce gisement est estimé à **60 (±21) millions d'individus** pour une biomasse de **617 (±197) tonnes**.

Le nombre de stations et la surface échantillonnée sur ce site ont évolué à chaque campagne. En 2016, un complément d'information sur la population de palourdes des coursières et du haut de l'estran a été jugé nécessaire, de nouvelles stations ont donc été ajoutées en plus de celles de 2015. En 2020, la surface du site échantillonnée a été réévaluée en fonction des pratiques observées et des limites des concessions conchylicoles. Un tirage aléatoire de nouvelles stations a été réalisé pour coller à la faisabilité de l'échantillonnage en fonction du temps disponible. La campagne de 2020 peut être considérée comme une nouvelle campagne de référence. Les suivis des prochaines années seront basés sur ces mêmes stations.

Précisons également qu'en raison de la crise sanitaire du COVID 19, le suivi initialement programmé début avril a été repoussé fin-mai, soit près de 2 mois plus tard. Habituellement ces suivis sont réalisés entre les mois de mars et d'avril.

Les résultats obtenus en termes d'effectif et de biomasse sont donc difficilement comparables entre les 3 années de suivis. Seules les densités sont comparables. On observe une diminution non significative de cette densité en 2016, par rapport aux observations de 2015. En 2020, la densité parait augmenter, tout en restant en dessous des valeurs de 2015. L'interprétation de cette tendance est compliquée avec seulement 2 années de suivis qui ne se suivent pas toutes.

Notons également la faible quantité de juvéniles de l'année précédente dans l'échantillonnage. Il faudra observer si cela a un impact sur la structure de population d'ici 2 à 3 ans.

On remarque que le site d'Ade est plus riche en palourdes que le site de Manson. Sur ce dernier, les palourdes sont principalement concentrées sur la partie haute de l'estran. Le site de Manson, plus facile d'accès que le site d'Ade est davantage fréquenté par les pêcheurs de loisir. Les pêcheurs professionnels évoluent quant à eux principalement sur le site de Manson. Le croisement des données de fréquentation et des données de prélèvement des pêcheurs (professionnels et de loisir) qui seront récoltées dans le cadre du suivi élargi des populations de palourdes, apporteront des éléments complémentaires pour expliquer cette différence de concentration observée entre les 2 sites.

4.2 Bourgeois

En mai 2020, le nombre de palourdes sur le gisement de Bourgeois est estimé à **79** (±**46**) millions d'individus pour une biomasse de **647** (±**362**) tonnes. Les palourdes se concentrent principalement dans le nord-est du secteur suivi.

Sur les 3 suivis réalisés jusqu'à présent depuis 2015, l'année 2020 est celle où le plus grand nombre de palourdes a été estimé. En revanche, tout comme en 2018, la proportion de palourdes commerciales reste faible (< 15%). Avec l'analyse ultérieure des données de la pêche de loisir et de la pêche professionnelle, on devrait déterminer si l'exploitation des palourdes sur ce site explique la faible proportion de palourdes commerciales observées, ou si d'autres facteurs environnementaux rentrent en jeu.

À l'image des observations sur les autres sites échantillonnés en 2020, la proportion de jeunes palourdes nées l'année qui précède est faible sur Bourgeois (3%). Un éventuel impact sur les classes de taille commerciale pourrait être observé dans les 2 à 3 ans à venir.

Afin de prendre en compte l'impact de la pêche de loisir à l'échelle complète du secteur de Bourgeois, un élargissement de la zone d'échantillonnage aux secteurs fréquentés par la pêche de loisir au sud et au nord de la zone actuelle est envisagé pour les suivis des années à venir. L'échantillonnage actuel sera complété avec le suivi d'autres stations dans le secteur étendu.

5- Conclusion

Cette campagne a l'initiative du PNM de l'estuaire de la Gironde et de la mer des Pertuis permet de compléter les suivis des populations de palourdes réalisés depuis 2014 par le CDPMEM 17 et la Communauté de communes de l'Ile de Ré. 5 des 7 sites classés pour la pêche à pied professionnelle des coquillages fouisseurs (palourdes principalement) sont ainsi suivis sur le périmètre du parc. Ces données seront complétées par le suivi de la fréquentation des pêcheurs de loisir et l'estimation de leurs prélèvements.

L'analyse de l'ensemble de ces données, auxquelles s'ajoutent les déclarations de capture des pêcheurs professionnels permettra d'avoir une vision globale de l'état des différentes populations de palourdes, de leurs exploitations et de leurs évolutions dans le temps. Le cas échéant, des mesures de gestion pour assurer leur durabilité pourront ainsi être proposées sur le périmètre du PNM en lien avec la finalité 15 de son plan de gestion visant le maintien ou l'atteinte de niveaux de populations permettant l'exploitation durable des ressources halieutiques locales.

Remerciements

Les remerciements s'adressent à Pierre-Guy Sauriau du Laboratoire LIENSs Unité Mixte de Recherche CNRS/Université de la Rochelle, pour son aide précieuse sur la méthodologie mise en place et le traitement des données.

Merci aux salariées du CDPMEM 17, du Parc Naturel Marin et du CPIE Marennes-Oléron qui ont participé aux campagnes de terrain et contribué à la récolte des données, ainsi qu'au technicien du CREAA.

Annexes

Annexe 1 : Tableau des résultats bruts obtenus sur la zone classée « pêche à pied » d'Ade Manson

	STATION	Latitude	Longitude	nb total	nb ≥ 35 mm	nb < 35 mm	poids total (g)	poids ≥ 35 mm (g)	poids < 35 mm (g)
	AM01	1°12,018	45°51,5819	38	7	31	370,8	100,3	270,5
	AM02	1°11,904	45°51,5040	1	0	1	10,7	0,0	10,7
	AM03	1°12,096	45°51,4620	7	1	6	68,9	14,7	54,2
	AM04	1°11,994	45°51,4500	4	0	4	30,7	0,0	30,7
	AM05	1°11,814	45°51,4380	9	5	4	151,7	103,5	48,2
	AM06	1°11,976	45°51,3539	12	5	7	136,9	75,8	61,1
	AM07	1°11,826	45°51,33	2	0	2	24,9	0,0	24,9
	AM08	1°12,072	45°51,2999	23	3	20	201,8	38,3	163,5
	AM09	1°11,736	45°51,2700	1	1	0	17,3	17,3	0,0
	AM10	1°11,976	45°51,24	26	15	11	331,7	231,0	100,7
	AM11	1°11,862	45°51,24	0	0	0	0,0	0,0	0,0
	AM12	1°11,574	45°51,204	5	3	2	62,8	46,7	16,1
Ade	AM13	1°11,73	45°51,1979	55	21	34	562,9	281,7	281,2
Ā	AM14	1°12,174	45°51,1739	56	4	52	470,2	45,5	424,7
	AM15	1°11,982	45°51,114	10	2	8	105,0	29,7	75,3
	AM16	1°12,276	45°51,0839	31	1	30	242,8	12,2	230,6
	AM17	1°11,724	45°51,0780	12	7	5	168,1	122,8	45,3
	AM18	1°11,922	45°51,0599	9	3	6	103,5	41,5	62,0
	AM19	1°12,078	45°51,036	16	3	13	161,1	50,1	111,0
	AM20	1°12,324	45°51,0059	17	2	15	139,1	24,1	115,0
	AM21	1°12,198	45°50,9939	37	8	29	305,1	120,0	185,1
	AM22	1°11,874	45°50,958	7	4	3	83,3	53,4	29,9
	AM23	1°12,03	45°50,9520	7	2	5	71,0	27,4	43,6
	AM24	1°11,664	45°50,9399	0	0	0	0,0	0,0	0,0
	AM25	1°12,18	45°50,9220	23	11	12	293,1	173,6	119,5
	AM26	1°11,586	45°50,8860	1	0	1	8,1	0,0	8,1
		Total Ade	ı	409	108	301	4121,5	1609,7	2511,9
	AM27	1°11,94	45°50,8080	3	1	2	48,1	22,4	25,7
	AM28	1°12,12	45°50,778	2	0	2	13,0	0,0	13,0
	AM29	1°11,82	45°50,7479	0	0	0	0,0	0,0	0,0
	AM30	1°12,036	45°50,7239	16	6	10	165,3	84,2	81,1
	AM31	1°11,916	45°50,7119	16	9	7	215,8	150,3	65,5
	AM32	1°11,658	45°50,6999	2	2	0	46,0	46,0	0,0
	AM33	1°11,796	45°50,6699	0	0	0	0,0	0,0	0,0
_	AM34	1°11,706	45°50,6099	1	0	1	6,3	0,0	6,3
Manson	AM35	1°12,072	45°50,598	13	3	10	115,5	44,5	71,0
Mar	AM36	1°11,814	45°50,562	0	0	0	0,0	0,0	0,0
_	AM37	1°11,988	45°50,484	7	4	3	92,3	63,1	29,2
	AM38	1°11,586	45°50,4779	0	0	0	0,0	0,0	0,0
	AM39	1°11,784	45°50,4779 45°50,4299	0	0	0	0,0	0,0	0,0
	AM40 AM41	1°11,688 1°11,892	45°50,4240	2	0	2	0,0 14,9	0,0 0,0	0,0 14,9
	AM42	1°12,024	45°50,4240	20	11	9	232,2	170,7	61,5
	AM43	1°11,574	45°50,394	0	0	0	0,0	0,0	0,0
	AM44	1°11,964	45°50,3399	16	0	16	110,1	0,0	110,1
	AM45	1°11,796	45°50,3340	3	0	3	32,3	0,0	32,3
		tal Manson	15 50,5540	101	36	65	1091,8	581,2	510,6
	AM46	1°12,096	45°51,5160	3	1	2	35,3	15,3	20,0
	AM47	1°11,88	45°51,4439	2	2	0	38,4	38,4	0,0
	AM48	1°12,012	45°51,4019	12	4	8	147,6	62,3	85,3
Ň	AM49	1°12,126	45°51,2099	5	4	1	66,2	53,3	12,9
Coursières	AM50	1°11,856	45°51,1800	2	2	0	32,5	32,5	0,0
urs	AM51	1°11,658	45°51,138	0	0	0	0,0	0,0	0,0
ပိ	AM52	1°11,562	45°50,9819	5	3	2	67,4	46,8	20,6
	AM53	1°12,042	45°50,652	12	1	11	95,0	14,2	80,8
1	AM54	1°11,742	45°50,5319	0	0	0	0,0	0,0	0,0
	AM55	1°11,646	45°50,5140	0	0	0	0,0	0,0	0,0
		1°11,646 al Coursières		0 41	0 17	0 24	0,0 482,4	0,0 262,8	,

Annexe 2: Tableau des résultats bruts obtenus sur la zone classée « pêche à pied » de Bourgeois

STATION	Latitude	Longitude	nb total	nb TC	nb TNC	poids total (g)	poids TC (g)	poids TNC (g)
M01	1°09,8804	45°50,1846	14	3	11	132,9	41,5	91,4
M02	1°09,6695	45°50,1704	2	0	2	12,1	0,0	12,1
M03	1°09,5118	45°50,0977	29	9	20	286,7	134,2	152,5
M04	1°10,072	45°50,0788	2	0	2	12,8	0,0	12,8
M05	1°09,8392	45°50,0746	13	1	12	105,4	16,7	88,7
M06	1°09,6648	45°50,0637	12	2	10	104,1	22,3	81,8
M07	1°10,204	45°49,9761	0	0	0	0,0	0,0	0,0
M08	1°09,3605	45°49,9556	11	0	11	99,0	0,0	99,0
M09	1°09,9871	45°49,9424	3	1	2	28,1	13,0	15,1
M10	1°09,7857	45°49,9387	48	8	40	391,5	110,9	280,6
M11	1°09,6144	45°49,9203	50	4	46	353,7	50,3	303,4
M12	1°09,4720	45°49,8596	5	1	4	47,6	17,3	30,3
M13	1°10,091	45°49,8123	0	0	0	0,0	0,0	0,0
M14	1°09,7729	45°49,8020	9	2	7	82,5	29,7	52,8
M15	1°10,333	45°49,7716	0	0	0	0,0	0,0	0,0
M16	1°09,4125	45°49,7424	4	0	4	30,4	0,0	30,4
M17	1°09,6211	45°49,7394	4	1	3	42,7	18,8	23,9
M18	1°09,9349	45°49,7113	0	0	0	0,0	0,0	0,0
M19	1°09,5268	45°49,6335	0	0	0	0,0	0,0	0,0
M20	1°09,1427	45°49,6320	33	1	32	197,1	13,0	184,1
M21	1°09,3294	45°49,6154	0	0	0	0,0	0,0	0,0
M22	1°09,1418	45°49,4887	20	5	15	173,6	73,1	100,5
M23	1°09,3283	45°49,4434	0	0	0	0,0	0,0	0,0
M24	1°09,0072	45°49,4029	5	1	4	48,7	13,0	35,7
M25	1°09,2264	45°49,3198	0	0	0	0,0	0,0	0,0
M26	1°08,8761	45°49,2390	4	1	3	50,1	19,4	30,7
M27	1°09,175	45°49,234	0	0	0	0,0	0,0	0,0
M28	1°09,0569	45°49,1964	0	0	0	0,0	0,0	0,0
M29	1°09,2164	45°49,1173	0	0	0	0,0	0,0	0,0
M30	1°08,8687	45°49,1107	3	0	3	10,7	0,0	10,7
M31	1°08,9132	45°49,0109	0	0	0	0,0	0,0	0,0
M32	1°09,0882	45°48,9815	0	0	0	0,0	0,0	0,0
M33	1°08,6685	45°48,9203	0	0	0	0,0	0,0	0,0
M34	1°08,8671	45°48,8804	0	0	0	0,0	0,0	0,0
M35	1°08,7187	45°48,7863	0	0	0	0,0	0,0	0,0
M36	1°08,8788	45°48,7293	0	0	0	0,0	0,0	0,0
To	otal Bourge	eois	271	40	231	2209,7	573,2	1636,5

Annexe 3 : Tableaux récapitulatifs des principaux résultats depuis 2014 sur les différents gisements suivis

		BELLEVUE														
		20	14	20:	15	20	16	20	17	20	18	20	019	20	20	
	surface (ha)							259	,1							
	nb de station							41								
	nb de strate							4								
	échantillon	8:	20	67	79	553 1015			558		591		54	1 7		
		moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	
	TOTAL	107	50	104	51	83	51	171	91	96	42	101	40	94	44	
	TC (35 mm ≤)	17	10	25	14	15	7	36	18	15	8	14	6	22	12	
d'individus	TNC (< 35 mm)	91	41	79	39	68	45	135	77	81	36	87	37	72	34	
Densité en	TOTAL	41	19	40	20	32	20	66	35	37	16	39	16	36	17	
nombre	TC (35 mm ≤)	6	4	10	5	6	3	14	7	6	3	5	2	8	4	
d'ind. par m²	TNC (< 35 mm)	35	16	30	15	26	17	52	30	31	14	34	14	28	13	
D:	TOTAL	759	373	933	458	708	407	1114	504	728	312	750	310	895	428	
Biomasse en tonnes	TC (35 mm ≤)	238	142	358	184	211	84	503	245	214	115	212	96	303	157	
tonnes	TNC (< 35 mm)	521	245	574	288	496	333	611	274	514	223	538	251	592	288	
	TOTAL	293	144	360	177	273	157	430	195	281	121	289	120	345	165	
Densité en g	TC (35 mm ≤)	92	55	138	71	82	32	194	95	83	44	82	37	117	61	
par m²	TNC (< 35 mm)	201	95	222	111	192	129	236	106	198	86	207	97	228	111	
Fraction	% de l'effectif	15,4%		24,4	24,4%		18,5%		20,9%		15,3%		13,9%		23,2%	
exploitable	% de biomasse	31,	3%	38,4	4%	29,	9%	45,	1%	29,	4%	28	,3%	33,	8%	

		BONNE ANSE									
		2014 2016			16	20		2019		2020	
	surface (ha)					108,					
	nb de station					30		***************************************			
	nb de strate					1			***************************************		
	échantillon	74	43	63	33	49	91	363		22	24
		moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)
Abondance	TOTAL	89	31	76	28	59	25	44	16	27	12
en millions	TC (35 mm ≤)	13	5	24	11	18	11	13	4	6	3
d'individus	TNC (< 35 mm)	76	29	53	20	41	17	31	12	20	10
Densité en	TOTAL	83	29	70	26	55	23	40	14	25	11
nombre	TC (35 mm ≤)	12	4	22	10	16	10	12	4	6	3
d'ind. par m²	TNC (< 35 mm)	70	27	49	18	38	15	28	11	19	9
Biomasse en	TOTAL	676	207	698	258	553	257	421	137	268	112
tonnes	TC (35 mm ≤)	202 474	71	330	154	260	150	200	69	97	44
	TNC (< 35 mm)	4/4	169	368	143	293	123	221	83	171	76
	TOTAL	625	191	645	239	511	237	389	127	248	104
Densité en g	TC (35 mm ≤)	187	65	305	142	240	138	184	64	90	40
par m²	TNC (< 35 mm)	438	157	340	132	271	114	204	77	158	70
		.50	137	340	132	_/1	227	77		155 70	
Fraction	% de l'effectif	14,	8%	31,0%		30,1%		29,5%		24,1%	
exploitable	% de biomasse	29,	9%	47,3%		47,0%		47,4%		36,2%	

		20	16	20	17	20	18	20	19			
	surface (ha)				358							
	nb de station	5	4			60)					
	nb de strate			3								
	échantillon	75	755		36	57	77	50)2			
		moyenne	± IC (95%)									
Abondance	TOTAL	173	67	157	52	118	40	107	44			
en millions	TC (35 mm ≤)	70	28	77	25	54	20	46	18			
d'individus	TNC (< 35 mm)	103	52	80	33	63	26	64	31			
Densité en	TOTAL	48	19	44	14	33	11	30	12			
nombre	TC (35 mm ≤)	19	8	21	7	15	6	13	5			
d'ind. par m²	TNC (< 35 mm)	29	14	22	9	18	7	18	9			
Biomasse en	TOTAL	2082	753	1990	619	1548	523	1310	520			
tonnes	TC (35 mm ≤)	1079	426	1236	397	911	332	747	272			
	TNC (< 35 mm)	1003	488	754	320	637	271	597	304			
Densité en g	TOTAL	581	210	555	173	432	146	366	145			
par m²	TC (35 mm ≤)	301	119	345	111	254	93	208	76			
•	TNC (< 35 mm)	280	136	210	89	178	76	167	85			
Fraction	% de l'effectif	40,3%		48,		46,		43,0%				
exploitable	exploitable % de biomasse		8%	62,	1%	58,	9%	57,0%				

IC : intervalle de confiance à 95 % de l'estimation

TC : Taille commerciale

TNC : Taille non commerciale

				BOURG	EOIS			ADE-MANSON						
		201	.5		18	20:	20	20	15		16	20	20	
	surface (ha)	316,3							95	160,6				
	nb de station			36)					36			5	
	nb de strate	1								2		3		
	échantillon	204	4	113		271		458		366		55	51	
		moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	moyenne	± IC (95%)	
Abondance	TOTAL	60	30	33	19	79	46	41	14	32	11	60	21	
	TC (35 mm ≤)	26	15	8	5	12	8	15	5	9	4	17	7	
d'individus	TNC (< 35 mm)	34	18	25	17	68	40	26	10	23	8	43	17	
Densité en	TOTAL	19	9	10	6	25	15	43	15	33	11	38	13	
nombre	TC (35 mm ≤)	8	5	2	2	4	2	15	5	9	4	11	4	
d'ind. par m²	TNC (< 35 mm)	11	6	8	5	21	13	28	10	24	8	27	10	
Biomasse en	TOTAL	667	338	267	145	647	362	458	161	266	92	617	197	
tonnes	TC (35 mm ≤)	368	215	118	78	168	111	236	89	128	59	257	102	
toilles	TNC (< 35 mm)	299	160	149	95	479	273	222	85	138	46	360	132	
	TOTAL	211	107	85	46	205	115	480	169	279	96	384	122	
Densité en g	TC (35 mm ≤)	116	68	37	25	53	35	247	93	135	62	160	63	
par m²	TNC (< 35 mm)	95	50	47	30	152	86	232	89	144	48	224	82	
Fraction	% de l'effectif	43,1% 23,0%			0%	14,	8%	35,	4%	28,1%		28,0%		
	% de biomasse	55,2		44,2%		25,		51,6%		48,3%		41,7%		

Étude réalisée avec le soutien du

CREAA

Prise de Terdoux 17480 Le Château d'Oléron

Tel: 05 46 47 51 93 Fax: 05 46 47 53 15

Courriel: creaa@wanadoo.fr

http:/www.creaa.fr

creaa-